リチウム原子暗状態の高感度発光検知と量子計測

~ 高温で動作する原子磁気センサに向けて ~

理学研究科 物質科学専攻

〇准教授 石川 潔

キーワード

リチウム原子, 高温原子センサ, 磁気計測, 量子干渉効果, 暗状態, 原子発光, 標準量子限界, 古典計測, 量子計測

研究概要

リチウム (Li) 原子の基底状態はエネルギー構造が単純なため, Li 原子への衝突現象を介して他の原子の電子状態を調べたり (プローブ原子), 電場や磁場を感知したり (センサ原子) できる. 我々は, 周波数安定なレーザー光により Li 原子の暗状態 (量子干

渉効果により光を吸収しない状態)を生成し、原子のコヒーレンスを利用した光計測をしている. すべての原子を暗状態にすると、原子集団は光を吸収せず、すなわち、発光もしない. 原子衝突により Li 原子の重ね合わせ状態(原子のコヒーレンス)が乱れると、光を吸収し発光する. 微弱な発光を検知する際、光子数揺らぎによる光子ショット雑音が古典計測の限界を与える. 発光検知の信号雑音比が、この標準量子限界の雑音で決まる古典計測の最良値にとどまらず、それを超える量子計測をめざしている. 現在は、発光信号にのる雑音の統計性を調べ、標準量子限界の発光検知であることを確認している.



図1 アルカリ金属と最適温度

図2 原子センサの概念図

図3 原子の発光と暗状態

アピールポイント

アルカリ金属原子 (ルビジウムやセシウムが代表的) を使った原子センサは非常に高感度に、外から加えられる磁場や電場、センサヘッドの回転などを検知する. しかし、既存の原子センサが動作する最適温度範囲は、室温 ~150 $^{\circ}$ である. 一方、高温で動作す

る原子センサが開発されると、将来、高温材料の磁性、深海熱水地帯など過酷環境における資源探索など へ応用が期待される.

High-temperature Li atomic magnetometry by symmetric hyperfine CPT resonances, K. Ishikawa, J. Optical Society of America B **38**, 2155 (2021). 高温で原子磁気センサが可能であることを示した初めての論文

Emission detection of dark resonance in a dilute lithium atomic vapor, K. Ishikawa, M. Inoue, and M. Yamamoto, J. Optical Society of America B **39**, 2300 (2022). 発光検知によって広い温度範囲で原子センサを動作させた

Pseudopotential analysis on hyperfine splitting frequency shift of alkali-metal atoms in noble gases, revisited, K. Ishikawa, J. Chemical Physics **158**, 084306 (2023). 広い温度範囲で超微細分裂の衝突シフトを解析した

Ground-state decoherence of lithium atoms by diatomic polar molecules and noble-gas atoms, K. Ishikawa, M. Yamamoto, Applied Physics B **129**, 113 (2023). 高温リチウム原子の量子暗状態の衝突緩和を調べた